- 相關推薦
《數(shù)學史》讀后感
當賞讀完一本名著后,大家心中一定有很多感想,這時就有必須要寫一篇讀后感了!那么你會寫讀后感嗎?下面是小編整理的《數(shù)學史》讀后感,歡迎大家借鑒與參考,希望對大家有所幫助。
《數(shù)學史》讀后感1
最近一段時間,我花兩天時間認真閱讀了《這才是好讀的數(shù)學史》這本書。這使得我對數(shù)學的發(fā)展有了更多的了解。
通過這本書的內(nèi)容,我了解到了數(shù)學是如何發(fā)展起來的,和一些為數(shù)學發(fā)展做出過巨大貢獻的集體或個人。從這本書里,我知道了,數(shù)學是從古代中東地區(qū)發(fā)展起來的.,在經(jīng)過一段時間的發(fā)展后,之后便在古希臘,印度,之后再是伊斯蘭帝國成長和發(fā)揚光大,后來再在歐洲得到進一步的發(fā)展。這本書還告訴了我,數(shù)學不是男性的天下,因為書里還提及了一些十分杰出的女性數(shù)學家,她們也為數(shù)學的發(fā)展做出了巨大的貢獻。
數(shù)學史是一個龐大的內(nèi)容,可以說,自從文明開始,就有了人去研究和在生活之中使用數(shù)學,數(shù)學為人們的生活帶去了巨大的便利。這本書在做表述數(shù)學史這一龐大的內(nèi)容時,還將其盡量簡化,簡化成了幾個板塊并且還是用十分生動的有趣的語言,但這樣也有缺點,就是有很多其他的事情沒有介紹到,同時對于中國的數(shù)學,作者可能是沒能找到太多相關的資料,所以并沒有介紹太多。
《這才是好讀的數(shù)學史》這本書先是說了數(shù)學在各個古代文明中的發(fā)展,之后又講了其中世界上有名的數(shù)學科目,并分別介紹了在這些方面出名的數(shù)學家,在后面又講到了現(xiàn)代數(shù)學,通過這兒我知道了,我們現(xiàn)在所學的數(shù)學是非常古老的,幾千年前的東西了,我們甚至連中世紀的水平都沒達到,也由此可以看出數(shù)學的發(fā)展之快。數(shù)學在一次次的個性與進步當中,變得越來越深奧,難以理解。
從千年前的1+1=2再到函數(shù),再到微積分,再到現(xiàn)代數(shù)學,數(shù)學也開始運用在更多地方,像航天,工程等,所以說,只有學好數(shù)學才能為社會做出更大的貢獻。
《數(shù)學史》讀后感2
著名數(shù)學家陳省身曾說過:“了解歷史的變化是了解這門科學的一個步驟!崩钗牧窒壬摹稊(shù)學史概論》即為我們了解數(shù)學提供了重要途徑,本書系統(tǒng)全面,且一反尋常論述類著作的晦澀,理性與趣味并舉,嚴謹與生動兼?zhèn),盡顯數(shù)學的神圣與魅力。成書的初衷是為一些高等院校的數(shù)學史課程提供一個參考范本,但事實上,本書除了為數(shù)學專業(yè)師生提供參考外,也在不同程度上滿足了對數(shù)學史感興趣的各類讀者的需求,自20xx年8月出版第1版以來,深受廣大讀者的推崇。
初讀此書時,我還是一名大三的學生,一次偶然的翻閱,為我打開了新世界的大門,那些陌生的、新奇的領域逐漸豁然開朗。原來數(shù)學的演化經(jīng)歷了一個漫長而又曲折的過程,從遠古到現(xiàn)代,它不斷發(fā)展完善著;原來每一個看似簡單的定理都承載著一個不為人知的故事,它簡單卻厚重;原來數(shù)學是一門理性卻并不冰冷的學科,它來源于生活而又高于生活,鮮活且生動。正如李文林先生在書中所言“數(shù)學的發(fā)展與人類的生產(chǎn)實踐和社會需求密切相關。對自然的探索是數(shù)學研究最豐富的源泉。但是數(shù)學的發(fā)展對于現(xiàn)實世界又表現(xiàn)出相對的獨立性。一門數(shù)學分支或一種數(shù)學理論已經(jīng)建立。人們便可在不受外部影響的情況下,僅靠邏輯思維而將它向前推進。并由此導致新理論與新思想的產(chǎn)生!彼且婚T科學,也是一種語言,有自己的文字符號,有自己的內(nèi)在邏輯體系。它從無到有,從零散到系統(tǒng),從微小到龐大,它所經(jīng)歷的每一次危機,又由此所取得的每一個重大突破,讓我為之震撼與景仰。
如今我已是一名入職兩年的.數(shù)學教師,再看《數(shù)學史概論》,又能從中汲取許多教學靈感。學生對數(shù)學沒興趣,認為數(shù)學枯燥,學無所用,一方面是因為多年被數(shù)學作業(yè)支配的恐懼,另一方面也來自于他們對數(shù)學的不了解。倘若在一個孩子還小的時候,就依據(jù)他的認知水平,給他講一些數(shù)學家的和數(shù)學發(fā)展中的逸聞趣事,例如,泰勒斯測量金字塔、阿基米德給國王測量王冠體積、祖沖之父子與圓周率、數(shù)學王子高斯與其卓越的數(shù)學天賦、費馬與費馬大定理、理發(fā)師悖論與芝諾悖論等等,那么,在日后的數(shù)學學習中,他也許不會對數(shù)學產(chǎn)生抵觸情緒。在學習到相關內(nèi)容時,看到一個個熟悉的人名,便會自然而然地產(chǎn)生親切感和興趣,學習起來事半功倍。
而作為高中數(shù)學教師,我們也可以將數(shù)學史融入平時的數(shù)學教學中,讓學生在數(shù)學學習過程中,不僅接觸到冷冰冰的知識,還接觸到知識背后所蘊藏的數(shù)學家的情感和意志,體味其中的數(shù)學思想,感受到數(shù)學的文化魅力。比如在必修一“函數(shù)與方程”的教學中,可以給學生講,從塔塔利亞到阿貝爾和伽羅瓦的方程發(fā)展史,讓學生明白利用“函數(shù)與方程的關系”求解方程近似解的意義。在必修二解析幾何的教學中,可以根據(jù)笛卡爾的“通用數(shù)學”思路,引導學生發(fā)現(xiàn):解決幾何問題的一大途徑,是將它轉(zhuǎn)化為代數(shù)問題。
數(shù)學是一門歷史性或者說是累積性很強的學科,我們學習數(shù)學的過程應與人類認識數(shù)學的順序一致,這樣更符合我們的數(shù)學認知規(guī)律。學習數(shù)學的道路上遇到的每一個問題,或許都有數(shù)學家為它絞盡腦汁過。讀數(shù)學史,可以幫助我們了解數(shù)學演化的真實過程,體味數(shù)學思想的誕生與發(fā)展,可以使我們從前人的探索和奮斗中汲取教訓和經(jīng)驗,獲得鼓舞和增強信心。那些悠悠長河中的數(shù)學人所做的每一份努力,都是為了讓我們可以站在他們的肩膀上,更清楚地認識這個世界。
數(shù)學是各個時代人類文明的標志之一,是推進人類文明的重要力量,數(shù)學史不僅是我們這些數(shù)學相關人士需要了解的,任何一個關心人類文明發(fā)展的人都值得了解。
《數(shù)學史》讀后感3
我閱讀《數(shù)學史通論》,完全在一種休閑的、輕松的,也是舒坦的、愉快的狀況之中。碰到繁復的數(shù)學公式、定理及其證明等,我一目十行、囫圇吞棗,一如我讀大部頭的小說,往往常規(guī)地跳過向來不太在意的大段心理描寫一樣。讀《數(shù)學史通論》,我卻十分留意它行云流水的敘述、縝密思維的演繹、多姿多彩的話語、宏大緊密的結(jié)構(gòu)。有時,我按圖索驥,對著目錄,找準其中的某一篇章,仔細揣摩;有時,我隨意打開其中的某頁,順勢而讀,總能做到樂在其中。我不求透徹的理解、不求系統(tǒng)的把握,《數(shù)學史通論》讓我與牛頓、高斯這些巨人親密接觸,也讓我循著代數(shù)、幾何、算術、三角學發(fā)展的脈絡,靠近(還不能說走進)數(shù)學。在我來說,只是追求閱讀視野的擴大、知識背景的重構(gòu)。
數(shù)學是人類創(chuàng)造活動的過程,而不單純是一種形式化的結(jié)果;運用辨證唯物主義的觀點看待數(shù)學科學及數(shù)學教育,在他們的形成和發(fā)展過程中,不但表現(xiàn)出矛盾運動的特點,而且它們與社會、政治、經(jīng)濟以及一般人類的文化有著密切的聯(lián)系。
它的內(nèi)容涉及到從上古時代到19世紀初的這段時期。為了跟蹤過去20xx年當中主要數(shù)學概念的.發(fā)展,作者非常重視第一手資料的搜集與運用。在介紹重要數(shù)學家的工作時,大量從他們的原著中引用材料。在不列顛博物館、英國皇家學會和劍橋三一學院的幫助下,引用了比較多的史料,使人們對原始的情況獲得了深刻的印象。同時,作者還注意到數(shù)學知識的繼承性和積累性,并不把重大的發(fā)現(xiàn)和發(fā)明完全歸功于某一個人。例如對歐幾里得和牛頓這樣一些主要的流派,作者到說明他們的成就的淵源,從而勾畫出數(shù)學科學本身發(fā)展的規(guī)律。斯科特博士依靠他對數(shù)學史的駕馭自如的能力寫出了這本富有激勵性的好書。
數(shù)學的歷史源遠流長。我了解到,在早期的人類社會中,是數(shù)學與語言、藝術以及宗教一并構(gòu)成了最早的人類文明。數(shù)學是最抽象的科學,而最抽象的數(shù)學卻能催生出人類文明的絢爛的花朵。這使數(shù)學成為人類文化中最基礎的學科。對此恩格斯指出:“數(shù)學在一門科學中的應用程度,標志著這門科學的成熟程度!痹诂F(xiàn)代社會中,數(shù)學正在對科學和社會的發(fā)展提供著不可或缺的理論和技術支持。
數(shù)學史不僅僅是單純的數(shù)學成就的編年記錄。數(shù)學的發(fā)展決不是一帆風順的,在跟讀的情況下是充滿猶豫、徘徊,要經(jīng)歷艱難曲折,甚至會面臨困難和戰(zhàn)盛危機的斗爭記錄。無理量的發(fā)現(xiàn)、微積分和非歐幾何的創(chuàng)立…這些例子可以幫助人們了解數(shù)學創(chuàng)造的真實過程,而這種真實的過程是在教科書里以定理到定理的形式被包裝起來的。對這種創(chuàng)造過程的了解則可以使人們探索與奮斗中汲取教益,獲得鼓舞和增強信心。
《數(shù)學史》讀后感4
首先,看到這本書后,第一個感覺是這本書太厚了,肯定無聊。而第二個印象是在每一個概念后的“見數(shù)學概念小史某某頁”,然后這最重要的事是這書講了這我不曾了解的事。
從過去到現(xiàn)在,先是古埃及人,他們的方法對于現(xiàn)代太不實用了,但是他們還是聰明,知道用符號,用兩個符號來表示1()和10(),這東西就是冪,在生活中肯定很少用,而且我還發(fā)現(xiàn)這數(shù)學呢我一直認為是想從簡單到復雜,但是并不是如此,可以說是相反的。
比巴倫的數(shù)學家們特別有趣,造的題目也有趣,不實用,但是很好玩,在本書的15頁,有這原題,這大概就是用一根蘆葦去測量田有多大,其實就是二元一次方程,但是看完頭都大了,不知到底在講什么。
繼續(xù)讀著,誒!看見了老熟人——歐幾里得,從小學周圍的人都在談論著他,給我講他的曠世巨作《幾何原本》,過去經(jīng)常說“好,好,好,《幾何原本》好!钡俏也⒉恢肋@書居然是公元前三千多年左右寫的,我一直認為他是希臘人,但是他居然是埃及人,這好奇怪,據(jù)書中說有很多的希臘數(shù)學家都不是希臘人。
繼續(xù)讀,數(shù)學也和天文學有關,從天文學中又出現(xiàn)了三角學,原來三角學是從天文學出來的',在讀阿拉伯數(shù)學時,看見了“楊輝”三角形,但是這書中的是“帕斯卡三角形”,其實也是“楊輝”三角形,所以后者好記些。
微積分里面看見了伽利略,但是似乎不是他的主場,所以不管他,微積分這里知道了流數(shù)和微分基本上都是我們現(xiàn)在所稱的導數(shù)。他們的發(fā)明者分別是牛頓和萊布尼茨。牛頓這特別熟悉了,這萊布尼茨是個律師和數(shù)學家,他最可以的是他的公式幾乎都是在顛簸的馬車上寫下。在各個學科每每留下了著作。
還有一個人讓我記住了,叫做歐拉,不光名字好記,他自己也是一個喜歡記的人,據(jù)書上所說,他可以說是一個論文天才也是數(shù)學天才,因為只要他有一個好的方法,自己馬上就寫一篇論文,來記下自己的觀念。
這便是這《這才是好讀的數(shù)學史》上篇的讀后感,不是特別無聊,反而還有一些有趣,整體的布局也不錯,讓讀者一步步深入,有特別強的吸引力,可能因人而異吧,下篇就是純數(shù)學了,所以這便是我的讀后感了。
《數(shù)學史》讀后感5
從小學的自然數(shù)擴展到了有理數(shù),主要是有了負數(shù)的加入,而數(shù)的產(chǎn)生是由于生產(chǎn)生活的需要,我們似乎很容易理解負數(shù)在我們生活的重要性,比如溫度計上的負數(shù),水位上的負數(shù)等等。但在教學中發(fā)現(xiàn)學生對于負數(shù)的'接受并沒有我們想象中那么簡單,不是簡單地在正數(shù)前添個負號而已,—1—1=0類似的問題頻頻出現(xiàn),為什么學生在學習負數(shù)時會遇到困難呢?
了解了數(shù)學史后就釋然了,數(shù)學家M·克萊因說:“從主流數(shù)學誕生開始,數(shù)學家花了1000年猜得到負數(shù)概念,又花了1000年才接受負數(shù)概念,因此我肯定,學生學習負數(shù)時必定會遇到困難!保↘line,1966)足足20xx年,在這樣一個漫長過程里不斷尋找、修改和完善的一個數(shù)學量,學生會遇到學習上的困難是注定的。而教師想用一節(jié)課把負數(shù)概念教明白,讓學生學明白幾乎不可能,這個過程必然不是一蹴而就的,這么一想,學生的很多問題就能被理解了。
德國生物學家?藸柼岢錾锇l(fā)生學定律:“個體發(fā)育時重演種族發(fā)展史!八麑⒃摱蓱糜谛睦韺W領域,指出“兒童的心理發(fā)展不過是種族進化的簡短重復而已。”若將該定律用在數(shù)學教育中,學生在學習中所出現(xiàn)的困難不過時20xx年前的數(shù)學家們所遇到過的問題,“這種歷史相似性的一種教育價值在于,教師能夠根據(jù)歷史上數(shù)學家所遭遇的困難來預測學生的學習困難或認知障礙,從而制定相應的教學策略,讓學生有效地跨越學習障礙、克服學習困難!边@樣看來,學生所面臨的問題又是何其寶貴與單純。因此讓學生在數(shù)學史的學習中體會數(shù)學家們得到數(shù)學概念的曲折不易,同時獲得心理安慰,接納自己的不理解并努力去理解,像個數(shù)學家一樣。
《數(shù)學史》讀后感6
《數(shù)學史與數(shù)學教育》這本書全面展示數(shù)學發(fā)展的概況,以及彌補學校教育中內(nèi)容偏少、嚴重與現(xiàn)代數(shù)學發(fā)展脫節(jié)的缺陷,克服受教育者“只見樹木不見林”的局限性;強調(diào)數(shù)學是人類創(chuàng)造活動的過程,而不單純是一種形式化的結(jié)果;運用辨證唯物主義的觀點看待數(shù)學科學及數(shù)學教育,在他們的形成和發(fā)展過程中,不但表現(xiàn)出矛盾運動的特點,而且它們與社會、政治、經(jīng)濟以及一般人類的文化有著密切的聯(lián)系。
數(shù)學的歷史源遠流長。在早期的人類社會中,數(shù)學與語言、藝術以及宗教一并構(gòu)成了最早的人類文明。對于數(shù)學是什么的問題,不同的社會群體都有不同的理解。在當代數(shù)學家的共同體中,一般將數(shù)學看作是“模式”的科學,用以“揭示人們從自然界和數(shù)學本身抽象世界中所觀察到的結(jié)構(gòu)和對稱性。”數(shù)學科學以抽象的理論為核心,這個核心一方面依靠自身的內(nèi)能、運用邏輯的鏈條發(fā)展新的理論,另一方面又不斷從現(xiàn)實世界的問題中發(fā)現(xiàn)問題、吸取營養(yǎng)并創(chuàng)造出解決現(xiàn)實問題的思想方法,形成了以純粹數(shù)學為核心、由眾多同心核層結(jié)構(gòu)組成的龐大的理論與應用體系。按照美國《數(shù)學評論》的統(tǒng)計,數(shù)學科學包括了約六十二個二級學科和四百多個三級學科。數(shù)學是最抽象的科學,而最抽象的數(shù)學卻能催生出人類文明的絢爛的花朵。這使數(shù)學成為人類文化中最基礎的學科,對此恩格斯指出:數(shù)學在一門科學中的應用程度,標志著這門科學的成熟程度。在現(xiàn)代社會中,數(shù)學正在對科學和社會的發(fā)展提供著不可或缺的理論和技術支持。雖然數(shù)學在現(xiàn)代社會中的應用是廣泛的,但卻不易為大眾所察覺。當人們驚嘆原子彈的巨大威力時,卻很難知道和真正理解它所依賴的“質(zhì)能公式”;當人們接受CT掃描儀的檢查和診斷時,很少有人理解它的設計原理:拉東變換;當人們盡情享受動畫片的娛樂時。很少聯(lián)想制作這些動畫背后的數(shù)學方法。數(shù)學是無聲的音樂,無色的`圖畫。數(shù)學家默默地奉獻著自己的聰明和才智,他們在邏輯的鏈條上構(gòu)筑著人間的奇跡。一個民族數(shù)學修養(yǎng)的高低,對這個民族的文明有很大的影響。然而,在現(xiàn)代所謂的“熱門學科”中,人們常常難以提到數(shù)學學科。當代數(shù)學家哈爾莫斯對此深表感觸道:甚至受過高等教育的人們,都不知道我的學科存在,這使我感到傷心!
與其他學科相比,數(shù)學科學經(jīng)歷了更長的歷史進程。在科學的其他分支中,物理學形成較早,但它也僅有幾百年的歷史,而數(shù)學的歷史已經(jīng)走過了兩千多年。數(shù)學史是研究數(shù)學發(fā)展規(guī)律的科學。它研究數(shù)學概念、數(shù)學方法和數(shù)學思想的起源和發(fā)展,同時也研究與之相關的社會政治、經(jīng)濟和一般文化的聯(lián)系。數(shù)學學科的累積性以及高度抽象而且模式化的特點,使得它在學校的教育中面臨著十分尷尬的局面。數(shù)學作為現(xiàn)代化社會中不可或缺的基礎學科,本應在學校課程中擁有更多的現(xiàn)代數(shù)學內(nèi)容。但實際情況是,到了高中階段的數(shù)學課程仍只有少量的現(xiàn)代數(shù)學知識,更多的是17世界中葉之前的初等數(shù)學,而大學一年級的微積分,也只有18世界的數(shù)學成果,大量的近代與現(xiàn)代數(shù)學難以進入大眾化的教育課程。我國在20世紀60年代制定”了加強雙基,培養(yǎng)三大能力”的數(shù)學教育目標,力圖在學校教育中使學生掌握數(shù)學基礎知識和基本能力,發(fā)展學生的數(shù)學計算、邏輯推理和空間想象能力。這一目標充分體現(xiàn)了學科自身的特點,卻仍然使不少的受教育者畏懼不前,甚至產(chǎn)生對數(shù)學學習的厭倦情緒。兩千多年前產(chǎn)生的歐幾里得幾何學是數(shù)學思想、方法的重要組成部分,也是自古以來學習數(shù)學的必修課程。但在現(xiàn)代的學校教育中,歐幾里得學變得食之無味而棄之不舍。在過去的半個世紀中,國際數(shù)學教育的改革浪潮跌宕起伏,歷盡艱險。我國國家教育部分分別于20xx年和20xx年辦法了九年義務教育和高中數(shù)學教育的課程標準,突出了“以人為本”、全面實施素質(zhì)教育的改革目標。大眾教育、學生為主體、增強應用意識、淡化形式、注重實質(zhì)等一系列數(shù)學教育的思想與理念在全球性的數(shù)學教育改革中應運而生。
《數(shù)學史》讀后感7
數(shù)學是一門枯燥的學科,我從小就這樣認為。但是通過這個寒假,這本《這才是好讀的數(shù)學史》,打開了知識文化的一扇大門,讓我對數(shù)學有了更深入的了解與思考,并且領悟到了其中的魅力。
數(shù)學的歷史非常悠久,從很久很久以前就已經(jīng)有了數(shù)學。那時候的人們剛剛接觸到了它,而隨著時代的變遷,數(shù)學的文化越來越博大精深。正是因為那些偉大的數(shù)學家們所做出的巨大貢獻,才讓后代的人類將數(shù)學發(fā)展得越來越好。例如一位亞歷山大的希臘數(shù)學家歐幾里得,他從一小部分公理中總結(jié)了歐幾里德幾何的原理,還寫了另外五部關于球面幾何、透視、數(shù)論、圓錐截面和嚴謹性的作品。歐幾里得因此被人們稱為“幾何學之父”。
數(shù)學文化奇幻無窮。最讓我印象深刻的便是阿拉伯數(shù)學文化。阿拉伯數(shù)學家不僅讓代數(shù)成為數(shù)學的重要組成部分,而且還在幾何學和三角學方面做出了重要的貢獻。同時,“帕斯卡三角形”也就是“楊輝”三角也被他們所了解。阿拉伯數(shù)學文化的特點則是能夠從其他數(shù)學的知識中汲取到最有用的精華,并且發(fā)展它。
數(shù)學中有很多被數(shù)學家們所發(fā)現(xiàn)和證明的公式、定義,我們都認為那是枯燥的、繁瑣的。但是數(shù)學有自己的靈魂與存在的'意義,普羅魯克斯曾說過“數(shù)學賦予它所發(fā)現(xiàn)的真理以生命;它喚起心神,澄清智慧;它給我們的內(nèi)心思想增添光輝;它滌盡我們有生以來的蒙昧與無知!币驗橛辛藬(shù)學,人類的民族發(fā)展得越來越順利;因為有了數(shù)學,人類的生活變化得多姿多彩……
數(shù)學的發(fā)展并不是我們想象中的那么順利,而是經(jīng)歷了無數(shù)的困難和挫折,才成為了我們現(xiàn)代的數(shù)學。它的成就則是數(shù)學家們?nèi)杖找挂沟难芯颗c思考所造就的,讓數(shù)學真正地顯露出了它的價值。中國的數(shù)學源遠流長,擁有著它自己的特色與意義。重大的數(shù)學定義、理論總是在繼承與發(fā)展原有的理論的基礎所建立起來的,它們不但不會改變原本的理論,而且經(jīng)常將最初的理論思想包含進去。正是因為我們不斷地為它注入靈魂力量,它才能越來越強大,越來越輝煌!
數(shù)學史的學習讓我們更加理解數(shù)學的意義,從而在知識的海洋中不斷發(fā)現(xiàn)、不斷進取、不斷研究,逐漸形成對數(shù)學的熱愛!
《數(shù)學史》讀后感8
數(shù)學的歷史源遠流長,而通過這本書我對數(shù)學的歷史有了基礎的了解。讓我初步了解了數(shù)學這門科學產(chǎn)生與發(fā)展的歷史過程,同時也感受到了數(shù)學家們的嚴謹?shù)闹螌W態(tài)度以及鍥而不舍的探索精神。
總而言之《這才是好讀的數(shù)學史》從數(shù)學的源頭寫起,分別介紹了古希臘,古印度,古巴比倫,古代中國,以及中世紀歐洲,這本書詳細的介紹了每個國家的數(shù)學發(fā)展,同時聯(lián)系了地理,將數(shù)學在世界版圖上鏈接起來。
其中在阿拉伯數(shù)學中,提到了帕斯卡三角形,也就是我們非常熟悉的楊輝三角,讓我更加了解了楊輝三角,以及阿拉伯人在幾何學和三角學方面做出的.重要貢獻。
一說起π,就想到了3.1415926……這一個無限不循環(huán)的數(shù)?搔凶畛醪⒉皇潜硎疽粋數(shù),而是希臘字母對應英文字母的P?梢姦械臍v史悠久。書中也舉例了從約公元前1650年到20xx年,人們從只能計算圓的周長的近似值到可以用現(xiàn)代計算器計算沒有誤差?梢姅(shù)學家們對數(shù)學的執(zhí)著。
這本書結(jié)合歷史地理為我們講述了與眾不同且吸引人的數(shù)學史,同時也讓我感受到了數(shù)學獨一無二的魅力。
《數(shù)學史》讀后感9
當我們學習過數(shù)學史后,自然會有這樣的感覺:數(shù)學的發(fā)展并不合邏輯,或者說,數(shù)學 發(fā)展的實際情況與我們今日所學的數(shù)學教科書很不一致。 我們今日中學所學的數(shù)學內(nèi)容基本 上屬于 17 世紀微積分學以前的初等數(shù)學知識,而大學數(shù)學系學習的大部分內(nèi)容則是 17、18 世紀的高等數(shù)學。 這些數(shù)學教材業(yè)已經(jīng)過千錘百煉, 是在科學性與教育要求相結(jié)合的原則指 導下經(jīng)過反復編寫的, 是將歷史上的數(shù)學材料按照一定的邏輯結(jié)構(gòu)和學習要求加以取舍編纂 的知識體系,這樣就必然舍棄了許多數(shù)學概念和方法形成的實際背景、知識背景、演化歷程 以及導致其演化的各種因素,因此僅憑數(shù)學教材的學習,難以獲得數(shù)學的原貌和全景,同時 忽視了那些被歷史淘汰掉的但對現(xiàn)實科學或許有用的數(shù)學材料與方法, 而彌補這方面不足的 最好途徑就是通過數(shù)學史的學習。在一般人看來, 數(shù)學是一門枯燥無味的學科, 因而很多人視其為畏途, 從某種程度上說, 這是由于我們的數(shù)學教科書教授的往往是一些僵化的、 一成不變的數(shù)學內(nèi)容, 如果在數(shù)學教 學中滲透數(shù)學史內(nèi)容而讓數(shù)學活起來, 這樣便可以激發(fā)學生的學習興趣, 也有助于學生對數(shù) 學概念、方法和原理的理解與認識的深化。 科學史是一門文理交叉學科, 從今天的教育現(xiàn)狀來看, 文科與理科的鴻溝導致我們的教 育所培養(yǎng)的人才已經(jīng)越來越不能適應當今自然科學與社會科學高度滲透的現(xiàn)代化社會, 正是 由于科學史的學科交叉性才可顯示其在溝通文理科方面的作用。 通過數(shù)學史學習, 可以使數(shù) 學系的學生在接受數(shù)學專業(yè)訓練的同
時, 獲得人文科學方面的修養(yǎng), 文科或其它專業(yè)的學生 通過數(shù)學史的學習可以了解數(shù)學概貌, 獲得數(shù)理方面的修養(yǎng)。 而歷史上數(shù)學家的業(yè)績與品德 也會在青少年的人格培養(yǎng)上發(fā)揮十分重要的作用。 中國數(shù)學有著悠久的歷史,14 世紀以前一直是世界上數(shù)學最為發(fā)達的國家,出現(xiàn)過許 多杰出數(shù)學家,取得了很多輝煌成就,其源遠流長的以計算為中心、具有程序性和機械性的 算法化數(shù)學模式與古希臘的以幾何定理的演繹推理為特征的公理化數(shù)學模式相輝映, 交替影 響世界數(shù)學的'發(fā)展。由于各種復雜的原因,16 世紀以后中國變?yōu)閿?shù)學入超國,經(jīng)歷了漫長 而艱難的發(fā)展歷程才漸漸匯入現(xiàn)代數(shù)學的潮流。 由于教育上的失誤, 致使接受現(xiàn)代數(shù)學文明 熏陶的我們,往往數(shù)典忘祖,對祖國的傳統(tǒng)科學一無所知。數(shù)學史可以使學生了解中國古代 數(shù)學的輝煌成就, 了解中國近代數(shù)學落后的原因, 中國現(xiàn)代數(shù)學研究的現(xiàn)狀以及與發(fā)達國家 數(shù)學的差距,以激發(fā)學生的愛國熱情,振興民族科學。
《數(shù)學家徐利治的故事》,知道了徐老先生在數(shù)學上為祖國做出了貢獻,他寫的許多論 文在國際上引起了反響,他還培養(yǎng)出一批成材的學生。 徐老先生為什么能成為數(shù)學家?為什么能做出這樣大的貢獻?原因之一, 就是他小時候不怕 困難,刻苦學習。文章里寫道:“他在讀書時常把伯父給他的午飯錢省下來,用來買書和買 練習本,為了節(jié)省用紙,他常用手指在睡覺的涼席上練字,夜深人靜,同學們早已進入甜蜜 的夢鄉(xiāng),徐利治卻來到走廊,在燈光下認真地學習。白天,他泡在圖書館里用饅頭、白開水 充饑……”可以看出,徐老先生小時候?qū)W習條件很不好,連買書、買練習本的錢都缺乏,只 好節(jié)省午飯錢,然而,他勤奮學習,并不因?qū)W習條件差而氣餒。 在我們這時代,家庭生活比較富裕,很多家只有一個孩子,零花錢比較多,這些錢我們不是 去打電子游戲,就是去買好吃的。平時,也很浪費,一張紙不是寫幾個字就扔了,就是折紙 飛機玩,一點也不知道節(jié)省。 在學習上,現(xiàn)在很多同學都不認真學習,學習目的不明確,我也是這樣,做題稍微遇到 一點困難就氣餒了。 我們的學習態(tài)度和徐老先生那種廢寢忘食的學習精神相比, 真有十萬八 千里的差距。
《數(shù)學史》讀后感10
今年的寒假出奇的漫長,在這漫長的寒假里,我讀了一本我不怎么喜歡的書——《數(shù)學史》,為什么不喜歡呢?是因為我很多不懂,但是讀著讀著我就喜歡上了,《數(shù)學史》記錄著人類數(shù)學歷史發(fā)展的進程,讀了它,我有一點膚淺的體會。
體會一:數(shù)學源自于與生活的需要與發(fā)展。
書中寫到:人類在很久之前就已經(jīng)具有識辨多寡的能力,從這種原始的數(shù)學到抽象的“數(shù)”概念的形成,是一個緩慢漸進的過程。人們?yōu)榱朔奖阌谏畋阌辛怂阈g,于是開始用手指頭去“計算”,手指頭計數(shù)不夠就開始用石頭,結(jié)繩,刻痕去計計數(shù)。例如:古埃及的象形數(shù)字;巴比倫的'楔形數(shù)字;中國的甲骨文數(shù)字;希臘的阿提卡數(shù)字;中國籌算術碼等等。雖然每種數(shù)字的誕生都有不同的背景與用途,以及運算法則,但都同樣在人類歷史發(fā)展和數(shù)學發(fā)展起著至關重要的作用,極大地推動了人類文明的前進。
體會二:河谷文明和早期數(shù)學在歷史的長河一樣璀璨奪目。
歷史學家往往把興起于埃及,美索不達米亞,中國和印度等地域的古文明稱為“河谷文明”,早期的數(shù)學,就是在尼羅河,底格里斯河與幼發(fā)拉底河,黃河與長江,印度河與恒河等河谷地帶首先發(fā)展起來的。埃及人留下來的兩部草紙書——萊茵徳紙草書和莫斯科紙草書,還有經(jīng)歷幾千年不倒的神秘金字塔,給后人詮釋了古埃及人在代數(shù)幾何的偉大成就,也給后人留下了輝煌的文化歷史,而美索不達米亞在代數(shù)計算方面更是達到令人不可思議的程度。三次方程,畢達哥拉斯都是它創(chuàng)造的不朽的歷史,在數(shù)學史上的地位是至關重要的。
古人云:讀史使人明智。讀了《數(shù)學史》讓我明白:數(shù)學源于生活,高于生活,最終服務于生活,運用于生活。
《數(shù)學史》讀后感11
從小到大,在學習數(shù)學的過程中,我們接觸大量的數(shù)學題,但卻對數(shù)學的歷史很少提及!稊(shù)學史》,是一本專門研究數(shù)學的歷史,娓娓道來數(shù)學從古代到先代的發(fā)展史,滿足了我的好奇,把數(shù)學的發(fā)展過程展示出來。
本書于1958年出版,作者是J.F.斯科特。書中主要闡述西方數(shù)學的發(fā)展歷史,但也專門用-章講述印度和中國的數(shù)學發(fā)展。沿著時間軸,數(shù)學的發(fā)展經(jīng)歷了從初等到高等的過程。
數(shù)學對于我來說是一個奇妙的科目,它不僅僅是一堆數(shù)字和符號連接在一起的公式,更是時代和科技的發(fā)展與進步。這本書讓我明白數(shù)學的起源與發(fā)展,隨著歷史的長河不斷向過往延伸,我熱愛數(shù)學,并不是因為它帶給我較高的成績,而是我本身在解出一道難題時的自豪與它帶給我的成就感,我享受解題的過程,隨著時間的流逝心卻在題海中慢慢放松,變得平靜。而在對數(shù)學史了解之后,你就像身在一張地圖,但你卻清楚的`知道自己的位置,尋找方向就愈加容易。
這本書很好的幫我更上一層樓,讓我懷著對數(shù)學的熱愛不斷探索,即便自己只不過是浩瀚星河中一粒塵埃,卻不顯得十足渺小。
學習數(shù)學,最好能夠先了解它的歷史與背景,這樣才能明白自己在學著什么,對它產(chǎn)生興趣而不是當成必須完成的任務,所以我也極力推薦大家看這本書。
《數(shù)學史》讀后感12
又這樣過了一個月了,盡管也就那么的幾節(jié)數(shù)學史的課,可是,依然讓我聽得津津入味。認識數(shù)學歷史,重溫數(shù)學的發(fā)展道路。
數(shù)學,似乎是一個枯燥的學科,但是,卻是我們生活當中,最為有用的工具之一,它是物理化學生物的搖籃,是政治經(jīng)濟學的基礎,是市場里的公平秤,是我們量化自己的必要工具。數(shù)學,就是這么的一個“工具箱”,前人用萬分的努力汗水,把這個工具弄得更為人性化,更能讓我們好好地使用。《數(shù)學史概論》這本書,真的讓我對數(shù)學有了更深的認識。
下面,我說說從《數(shù)學史概論》這本書,我又學到了什么。
古希臘第一位偉大的數(shù)學家泰勒斯,曾利用太陽影子成功地計算出了金字塔的高度,實際上利用的就是相似三角形的性質(zhì)。看吧,利用數(shù)學簡單的思維,就能把本不可能完成的計算,就這樣輕松解決了。在泰勒斯之后,以畢達哥拉斯為首的.一批學者,對數(shù)學做出了極為重要的貢獻。發(fā)現(xiàn)“勾股定理”,是他們最出色的成就之一,因此直到現(xiàn)在,西方人仍然把勾股定理稱為“畢達哥拉斯定理”。正是這個定理,導致了無理數(shù)的發(fā)現(xiàn)。勾股定理,我相信很多人都很熟悉,可是又有多少人知道其中的具體的得來過程呢,從這條定理的證明,到后來導致了無理數(shù)的發(fā)現(xiàn),我也相信未來,也一定有不少的理論在這個基礎上,不斷地被發(fā)現(xiàn),被證明。在畢達哥拉斯之后,就是偉大的古希臘哲學家亞里士多德,他是人類科學發(fā)展史上最博學的人物之一,正是他所創(chuàng)立的邏輯學,對古希臘數(shù)學的發(fā)展產(chǎn)生了深遠的影響。到了歐幾里德時代,幾何學已經(jīng)成為一門相當完整的學科了。歐幾里德的名著《幾何原本》,是世界數(shù)學史上最偉大的著作之一。時至今日,我們在初中階段學習的平面幾何,大部分知識依然來源于古老的《幾何原本》。在此之前,我只知道,亞里士多德在哲學方面為世界做出了很大的貢獻,可是也不可否認,在幾何方面他也對數(shù)學界做出的貢獻不可磨滅。
研究數(shù)學發(fā)展歷史的學科,是數(shù)學的一個分支,也是自然科學史研究下屬的一個重要分支。數(shù)學史研究的任務在于,弄清數(shù)學發(fā)展過程中的基本史實,再現(xiàn)其本來面貌,同時透過這些歷史現(xiàn)象對數(shù)學成就、理論體系與發(fā)展模式作出科學、合理的解釋、說明與評價,進而探究數(shù)學科學發(fā)展的規(guī)律與文化本質(zhì)。作為數(shù)學史研究的基該方法與手段,常有歷史考證、數(shù)理分析、比較研究等方法。可以說,在數(shù)學的漫長進化過程中,幾乎沒有發(fā)生過徹底推翻前人建筑的情況。正是我們不斷地為數(shù)學這座高樓添磚加瓦,它才能越立越高,越來越扎實,我也為可以這樣學習和認識數(shù)學而感到滿足!
《數(shù)學史》讀后感13
《數(shù)學史》一直是我最想讀的一本書教學中我越來越覺得作為一個數(shù)學教師,數(shù)學史對我們有多少重要!于是我拜讀了數(shù)學史。
我知道了,數(shù)學的歷史源遠流長。我了解到,在早期的人類社會中,是數(shù)學與語言、藝術以及宗教一并構(gòu)成了最早的人類文明。數(shù)學是最抽象的科學,而最抽象的數(shù)學卻能催生出人類文明的絢爛的花朵。這便使數(shù)學成為人類文化中最基礎的工具。而在現(xiàn)代社會中,數(shù)學正在對科學和社會的發(fā)展提供著不可或缺的理論和技術支持。
我知道了,第一次數(shù)學危機——你知道根號2嗎?你知道平時的一塊錢兩塊糖之中是怎么迸濺出無理數(shù)的火花的嗎?正是他——希帕蘇斯,是他首先發(fā)現(xiàn)了無理數(shù),是他開始質(zhì)疑藏在有理數(shù)的背后的神奇數(shù)字。從那時起無理數(shù)成為數(shù)字大家庭中的一員,推理和證明戰(zhàn)勝了直覺和經(jīng)驗,一片廣闊的天地出現(xiàn)在眼前。但是,希帕蘇斯卻被無情地拋進了大海。不過,歷史卻絕對不會忘記他,縱然海浪早已淹沒了他的身軀,我們今天還保留著他的名字——希帕蘇斯!
第二次數(shù)學危機——知道嗎?站在巨人的肩膀上的牛頓,曾經(jīng)站在英國大主教貝克萊的前面,用顫抖的嗓音述說者自己的觀點,沒有人相信他,沒有人支持他,即便他的觀點著實是今天的.正解!數(shù)學分析被建立在實數(shù)理論的嚴格基礎之上,數(shù)學分析才真正成為數(shù)學發(fā)展的主流。
第三次數(shù)學危機——我們聽過這個名字——羅素,但是緊跟在他的身后的兩個字卻是那么刺眼——“悖論”!傲_素悖論”的出現(xiàn)使數(shù)學的確定性第一次受到了挑戰(zhàn),徹底動搖了整個數(shù)學的基礎。與此同時,歌德爾的不完全性定理卻使希爾伯特雄心建立完善數(shù)學形式化體系、解決數(shù)學基礎的工作完全破滅。數(shù)學似乎是再也站不起來了。是的,羅素的觀點似乎真的很有道理,危機產(chǎn)生后,數(shù)學家紛紛提出自己的解決方案,比如ZF公理系統(tǒng)。這一問題的解決到現(xiàn)在還在進行中。羅素悖論的根源在于集合論里沒有對集合的限制,以至于讓羅素能構(gòu)造一切集合的集合這樣“過大”的集合,對集合的構(gòu)造的限制至今仍然是數(shù)學界里一個巨大的難題!不過,我們不能蔑視“羅素悖論”,換種說法,不正是這個“悖論”引起了我們的思考嗎?不正是這個“悖論”使我們更有創(chuàng)造精神嗎?
我知道了,我們中國在數(shù)學上的成就也絕對不能忽視,從《九章算術》到《周髀算經(jīng)》,中國傳統(tǒng)數(shù)學源遠流長,有其自身特有的思想體系與發(fā)展途徑。它持續(xù)不斷,長期發(fā)達,成就輝煌,呈現(xiàn)出鮮明的“東方數(shù)學”色彩,對于世界數(shù)學發(fā)展的歷史進程有著深遠的影響。
《數(shù)學史》讀后感14
在任何起點上要想學好數(shù)學,我們需要先理解相關問題,然后才能賦予答案的意義 ——引言
數(shù)學, 似乎是一個枯燥的學科,但卻是我們生活里最為有用的工具之一,它是物理化學生物的搖籃,是政治經(jīng)濟學的基礎,是市場里的公平稱,是我們量化自己的必要工具...是的,數(shù)學是一個“工具箱”!那么,前人是怎么樣把這個工具弄得更為人性化,更能讓我們好好地使用呢?看完《這才是好讀的數(shù)學史》后,我知道了許多。
《這才是好讀的`數(shù)學史》介紹了數(shù)學從有記載的源頭,到最初的算數(shù),再到代數(shù)、幾何等領域不斷地深入化發(fā)展的歷史過程。本書按照歷史發(fā)展順序,先后介紹了數(shù)學的開端,古希臘的數(shù)學,古印度的數(shù)學,古阿拉伯的數(shù)學,中世紀歐洲的數(shù)學,十五和十六世紀的代數(shù)學。
在人類對于數(shù)學漫漫求索之路上,誕生了許多古代文化,而這些古代文化發(fā)展了各種各樣的數(shù)學 。其中,古代伊拉克的歷史跨越了數(shù)千年,它包括了許多文明,如蘇美爾,巴比倫,亞述,波斯和希臘文明。所偶有這些文明都了解并使用數(shù)學,但有很多變化。在這兒不得不提到的是古希臘數(shù)學。在此之前,各個文明運用數(shù)學僅僅是用來協(xié)助、解決一些簡單的生活問題,有時不就此滿足的人們也會有簡單的探索,但希臘的數(shù)學家們是獨一無二的,他們將邏輯推理和證明作為數(shù)學中心,也是正因如此,他們永遠改變了運用數(shù)學的意義。
數(shù)學源于生活卻高于生活。如今的數(shù)學在生活中被廣泛的運用,一起熱愛數(shù)學吧!向為數(shù)學做出巨大奉獻的前人們致敬!
《數(shù)學史》讀后感15
讀完《這才是好讀的數(shù)學史》之后,我最想表達的就是對數(shù)學悠長的歷史的感嘆,這本書讓我了解到從3.7萬年前到現(xiàn)在21世紀的數(shù)學的發(fā)展與進步,也明白了數(shù)學在生活中的重要性。
下面我將介紹幾點我印象最深刻的內(nèi)容:
在書中第一章:開端中介紹了四大文明古國的數(shù)學文化,包括當時的人們用什么材質(zhì)的東西來記錄數(shù)學,用數(shù)學干什么以及保存情況如何。在這一章講述古巴比倫的數(shù)學是寫了他們數(shù)學中幾個特征,包括以60的冪表示數(shù)字,所以接近4000年后的今天為什么仍然把一小時分成60分,把一分鐘分成60秒。在這一章中也講了我國古代的數(shù)學文化,在書中介紹了《算經(jīng)十書》《九章算術》等中國古代的數(shù)學經(jīng)典,由于種種原因?qū)е庐敃r的數(shù)學文化的損失,但作者實事求是,沒有寫一些沒有歷史根據(jù)的東西,再一次讓我感受到這本書的嚴謹。
書中是按國家的'順序進行安排的,因為如果按時間順序安排的話,很容易弄混淆,作者按照時間線上在某個時間點上最重要的事情的國家來安排,體現(xiàn)了本書“好讀”的特點。
在書中有一個細節(jié)讓我注意,每一章最后都會有一段來推薦一些關于本章內(nèi)容更詳細的講解的書目,甚至詳細到了具體在哪一章,在書的最后把對應的書名寫了出來(雖然是英語的,我看不懂)從中可以看到作者對待數(shù)學的嚴謹和細致。
我非常喜歡在書中的一句話“學習數(shù)學就像認識一個人一樣,你對他(她)的過去了解的越多,你現(xiàn)在和將來就能越理解他(她),并與其互動!边@句話感覺就像說中了我的感受,我認為閱讀完之后,自己不僅會對數(shù)學更有興趣,而且在以后學習數(shù)學的時候更加認真對待。
【《數(shù)學史》讀后感】相關文章:
《數(shù)學史》讀后感05-01
《數(shù)學史》讀后感12-10
《數(shù)學史選講》讀后感02-20
數(shù)學史讀后感(通用12篇)12-16
《童年》讀后感-讀后感02-29
讀后感方案 -讀后感作文03-13
魯迅吶喊讀后感_讀后感01-10
《草房子》讀后感-讀后感02-15