- 相關推薦
九年級下冊數(shù)學知識點總結
總結是事后對某一階段的學習、工作或其完成情況加以回顧和分析的一種書面材料,它可以使我們更有效率,不如靜下心來好好寫寫總結吧。我們該怎么去寫總結呢?下面是小編整理的九年級下冊數(shù)學知識點總結,歡迎閱讀與收藏。
九年級下冊數(shù)學知識點總結 1
。1)圓的對稱性
1、圓的軸對稱性
圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。
2、圓的中心對稱性
圓是以圓心為對稱中心的中心對稱圖形。
(2)基本函數(shù)的概念及性質
1、函數(shù)y=—8x是一次函數(shù)。
2、函數(shù)y=4x+1是正比例函數(shù)。
3、函數(shù)是反比例函數(shù)。
4、拋物線y=—3(x—2)2—5的開口向下。
5、拋物線y=4(x—3)2—10的對稱軸是x=3。
6、拋物線的頂點坐標是(1,2)。
7、反比例函數(shù)的圖象在第一、三象限。
。3)一元二次方程常見考法
1、考查一元二次方程的根與系數(shù)的關系(韋達定理):這類題目有著解題規(guī)律性強的特點,題目設置會很靈活,所以一直很吸引命題者。主要考查①根與系數(shù)的推導,有關規(guī)律的探究②已知兩根或一根構造一元二次方程,這類題目一般比較開放;
2、在一元二次方程和幾何問題、函數(shù)問題的交匯處出題。(幾何問題:主要是將數(shù)字及數(shù)字間的關系隱藏在圖形中,用圖形表示出來,這樣的'圖形主要有三角形、四邊形、圓等涉及到三角形三邊關系、三角形全等、面積計算、體積計算、勾股定理等);
3、列一元二次方程解決實際問題,以實際生活為背景,命題廣泛。(常見的題型是增長率問題,注:平均增長率公式。
。4)數(shù)據(jù)的平均數(shù)中位數(shù)與眾數(shù)
1、數(shù)據(jù)13,10,12,8,7的平均數(shù)是10。
2、數(shù)據(jù)3,4,2,4,4的眾數(shù)是4。
3、數(shù)據(jù)1,2,3,4,5的中位數(shù)是3。
(5)特殊三角函數(shù)值
1、cos30°=根號3/2。
2、sin260°+cos260°=1。
3、2sin30°+tan45°=2。
4、tan45°=1。
5、cos60°+sin30°=1。
九年級下冊數(shù)學知識點總結 2
1、圖形的相似
相似多邊形的對應邊的比值相等,對應角相等;
兩個多邊形的對應角相等,對應邊的比值也相等,那么這兩個多邊形相似;
相似比:相似多邊形對應邊的比值。
2、相似三角形
判定:
平行于三角形一邊的直線和其它兩邊相交,所構成的三角形和原三角形相似;
如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;
如果兩個三角形的兩組對應邊的`比相等,并且相應的夾角相等,那么兩個三角形相似;
如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么兩個三角形相似。
3相似三角形的周長和面積
相似三角形(多邊形)的周長的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
4位似
位似圖形:兩個多邊形相似,而且對應頂點的連線相交于一點,對應邊互相平行,這樣的兩個圖形叫位似圖形,相交的點叫位似中心。
九年級下冊數(shù)學知識點總結 3
鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。
對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的`兩個角互為對頂角。
垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。
同位角、內(nèi)錯角、同旁內(nèi)角:
同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。
內(nèi)錯角:∠2與∠6像這樣的一對角叫做內(nèi)錯角。
同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。
命題:判斷一件事情的語句叫命題。
平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
對應點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
九年級下冊數(shù)學知識點總結 4
矩形知識點
1、矩形的概念
有一個角是直角的平行四邊形叫做矩形。
2、矩形的性質
(1)具有平行四邊形的一切性質
(2)矩形的四個角都是直角
(3)矩形的對角線相等
(4)矩形是軸對稱圖形
3、矩形的判定
(1)定義:有一個角是直角的平行四邊形是矩形(2)定理1:有三個角是直角的四邊形是矩形
(3)定理2:對角線相等的平行四邊形是矩形
4、矩形的面積:S矩形=長×寬=ab
正方形知識點
1、正方形的概念
有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。
2、正方形的性質
(1)具有平行四邊形、矩形、菱形的一切性質;
(2)正方形的四個角都是直角,四條邊都相等;
(3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角;
(4)正方形是軸對稱圖形,有4條對稱軸;
(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形;
(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。
3、正方形的判定
(1)判定一個四邊形是正方形的主要依據(jù)是定義,途徑有兩種:
先證它是矩形,再證有一組鄰邊相等。
先證它是菱形,再證有一個角是直角。
(2)判定一個四邊形為正方形的一般順序如下:
先證明它是平行四邊形;
再證明它是菱形(或矩形);
最后證明它是矩形(或菱形)。
圓知識點
圓的面積s=π×r×r
其中,π是周圍率,約等于3.14
r是圓的半徑。
圓的周長計算公式為:C=2πR.C代表圓的周長,r代表圓的半徑。圓的面積公式為:S=πR2(R的平方).S代表圓的面積,r為圓的半徑。
橢圓周長計算公式
橢圓周長公式:L=2πb+4(a-b)
橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。
橢圓面積計算公式
橢圓面積公式:S=πab
橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。
以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率T,但這兩個公式都是通過橢圓周率T推導演變而來。常數(shù)為體,公式為用。
對數(shù)公式
對數(shù)公式是數(shù)學中的一種常見公式,如果a^x=N(a>0,且a≠1),則x叫做以a為底N的對數(shù),記做x=log(a)(N),其中a要寫于log右下。其中a叫做對數(shù)的底,N叫做真數(shù)。通常我們將以10為底的`對數(shù)叫做常用對數(shù),以e為底的對數(shù)稱為自然對數(shù)。
數(shù)學學習技巧
1.求教與自學相結合
在學習過程中,即要爭取教師的指導和幫助,但是又不能過分依賴教師, 必須自己主動地去學習、去探索、去獲取,應該在自己認真學習和研究的基礎上去尋求教師和同學的幫助。
2.學習與思考相結合
在學習過程中,對課本的內(nèi)容要認真研究,提出疑問,追本究源。對每一個概念、公式、定理都要弄清其來龍去脈、前因后果、內(nèi)在聯(lián)系,以及蘊含于推導過程中的數(shù)學思想和方法。在解決問題時,要盡量采用不同的途徑和方法,要克服那種死守書本、機械呆板、不知變通的學習方法。
3.學用結合,勤于實踐
在學習過程中,要準確地掌握抽象概念的本質含義,了解從實際模型中抽象為理論的演變過程。對所學理論知識,要在更大范圍內(nèi)尋求它的具體實例,使之具體化,盡量將所學的理論知識和思維方法應用于實踐。
4.博觀約取,由博返約
課本是獲得知識的主要來源,但不是唯一的來源。在學習過程中,除了認真研究課本以外,還要閱讀有關的課外資料,來擴大知識領域。同時在廣泛閱讀的基礎上,進行認真研究,掌握其知識結構。
5.既有模仿,又有創(chuàng)新
模仿是數(shù)學學習中不可缺少的學習方法,但是決不能機械地模仿,應該在消化理解的基礎上,開動腦筋,提出自己的見解和看法,而不拘泥于已有的框框,不囿于現(xiàn)成的模式。
6.及時復習增強記憶
課堂上學習的內(nèi)容,必須當天消化,要先復習,后做練習,復習工作必須經(jīng)常進行,每一單元結束后,應將所學知識進行概括整理,使之系統(tǒng)化、深刻化。
7.總結學習經(jīng)驗,評價學習效果
學習中的總結和評價有利于知識體系的建立、解題規(guī)律的掌握、學習方法與態(tài)度的調(diào)整和評判能力的提高。在學習過程中,應注意總結聽課、閱讀和解題中的收獲和體會。
九年級下冊數(shù)學知識點總結 5
1.數(shù)軸
(1)數(shù)軸的概念:規(guī)定了原點、正方向、單位長度的直線叫做數(shù)軸.
數(shù)軸的三要素:原點,單位長度,正方向。
(2)數(shù)軸上的點:所有的有理數(shù)都可以用數(shù)軸上的點表示,但數(shù)軸上的點不都表示有理數(shù).(一般取右方向為正方向,數(shù)軸上的點對應任意實數(shù),包括無理數(shù).)
(3)用數(shù)軸比較大。阂话銇碚f,當數(shù)軸方向朝右時,右邊的數(shù)總比左邊的數(shù)大。
重點知識:
初中數(shù)學第一課,認識正數(shù)與負數(shù)!新初一的來~
2.相反數(shù)
(1)相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù).
(2)相反數(shù)的意義:掌握相反數(shù)是成對出現(xiàn)的,不能單獨存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個數(shù),它們分別在原點兩旁且到原點距離相等。
(3)多重符號的化簡:與“+”個數(shù)無關,有奇數(shù)個“﹣”號結果為負,有偶數(shù)個“﹣”號,結果為正。
(4)規(guī)律方法總結:求一個數(shù)的相反數(shù)的方法就是在這個數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括號。
3.絕對值
1.概念:數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值。
、倩橄喾磾(shù)的兩個數(shù)絕對值相等;
②絕對值等于一個正數(shù)的數(shù)有兩個,絕對值等于0的數(shù)有一個,沒有絕對值等于負數(shù)的數(shù).
、塾欣頂(shù)的絕對值都是非負數(shù).
2.如果用字母a表示有理數(shù),則數(shù)a 絕對值要由字母a本身的取值來確定:
、佼攁是正有理數(shù)時,a的絕對值是它本身a;
、诋攁是負有理數(shù)時,a的絕對值是它的相反數(shù)﹣a;
③當a是零時,a的絕對值是零.
即|a|={a(a>0)0(a=0)﹣a(a<0)
中考數(shù)學知識點
1、反比例函數(shù)的概念
一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實數(shù),函數(shù)的取值范圍也是一切非零實數(shù)。
2、反比例函數(shù)的圖像
反比例函數(shù)的圖像是雙曲線,它有兩個分支,這兩個分支分別位于第一、三象限,或第二、四象限,它們關于原點對稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。
3、反比例函數(shù)的性質
反比例函數(shù)k的符號k>0k<0圖像yO xyO x性質①x的取值范圍是x0,
y的取值范圍是y0;
②當k>0時,函數(shù)圖像的兩個分支分別
在第一、三象限。在每個象限內(nèi),y
隨x 的'增大而減小。
①x的取值范圍是x0,
y的取值范圍是y0;
、诋攌<0時,函數(shù)圖像的兩個分支分別
在第二、四象限。在每個象限內(nèi),y
隨x 的增大而增大。
4、反比例函數(shù)解析式的確定
確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個待定系數(shù),因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。
5、反比例函數(shù)的幾何意義
設是反比例函數(shù)圖象上任一點,過點P作軸、軸的垂線,垂足為A,則
(1)△OPA的面積.
(2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無論P怎樣移動,△OPA的面積和矩形OAPB的面積都保持不變。
矩形PCEF面積=,平行四邊形PDEA面積=
二次函數(shù)中考數(shù)學知識點
二次函數(shù)的解析式有三種形式:
(1)一般式:
(2)頂點式:
(3)當拋物線與x軸有交點時,即對應二次好方程有實根和存在時,根據(jù)二次三項式的分解因式,二次函數(shù)可轉化為兩根式。如果沒有交點,則不能這樣表示。
注意:拋物線位置由決定.
(1)決定拋物線的開口方向
、匍_口向上.
、陂_口向下.
(2)決定拋物線與y軸交點的位置.
、賵D象與y軸交點在x軸上方.
②圖象過原點.
、蹐D象與y軸交點在x軸下方.
(3)決定拋物線對稱軸的位置(對稱軸:)
①同號對稱軸在y軸左側.
、趯ΨQ軸是y軸.
③異號對稱軸在y軸右側.
(4)頂點坐標.
(5)決定拋物線與x軸的交點情況.、
①△>0拋物線與x軸有兩個不同交點.
、凇=0拋物線與x軸有的公共點(相切).
③△<0拋物線與x軸無公共點.
(6)二次函數(shù)是否具有、最小值由a判斷.
、佼攁>0時,拋物線有最低點,函數(shù)有最小值.
、诋攁<0時,拋物線有點,函數(shù)有值.
(7)的符號的判定:
表達式,請代值,對應y值定正負;
對稱軸,用處多,三種式子相約;
軸兩側判,左同右異中為0;
1的兩側判,左同右異中為0;
-1兩側判,左異右同中為0.
(8)函數(shù)圖象的平移:左右平移變x,左+右-;上下平移變常數(shù)項,上+下-;平移結果先知道,反向平移是訣竅;平移方式不知道,通過頂點來尋找。
(9)對稱:關于x軸對稱的解析式為,關于y軸對稱的解析式為,關于原點軸對稱的解析式為,在頂點處翻折后的解析式為(a相反,定點坐標不變)。
(10)結論:①二次函數(shù)(與x軸只有一個交點二次函數(shù)的頂點在x軸上Δ=0;
、诙魏瘮(shù)(的頂點在y軸上二次函數(shù)的圖象關于y軸對稱;
、鄱魏瘮(shù)(經(jīng)過原點,則。
(11)二次函數(shù)的解析式:
、僖话闶剑(用于已知三點。
②頂點式:用于已知頂點坐標或最值或對稱軸。
(3)交點式:其中、是二次函數(shù)與x軸的兩個交點的橫坐標。若已知對稱軸和在x軸上的截距,也可用此式。
【九年級下冊數(shù)學知識點總結】相關文章:
初二數(shù)學下冊知識點總結03-05
生物下冊知識點總結10-29
數(shù)學的知識點總結09-12
四年級數(shù)學下冊知識點總結09-04
高一下冊數(shù)學知識點總結08-11
初一下冊數(shù)學課本知識點總結10-29
數(shù)學概論知識點總結06-03
數(shù)學相似知識點總結08-11
數(shù)學橢圓知識點總結08-18