高一數(shù)學(xué)教案
作為一名優(yōu)秀的教育工作者,常常需要準(zhǔn)備教案,教案是實施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。那么優(yōu)秀的教案是什么樣的呢?以下是小編收集整理的高一數(shù)學(xué)教案,歡迎大家分享。
案例背景:
對數(shù)函數(shù)是函數(shù)中又一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識與理解.對數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實際問題的重要工具,是學(xué)生今后學(xué)習(xí)對數(shù)方程,對數(shù)不等式的基礎(chǔ).
案例敘述:
(一).創(chuàng)設(shè)情境
(師):前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).
反函數(shù)的實質(zhì)是研究兩個函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個熟悉的函數(shù)就是指數(shù)函數(shù).
(提問):什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?
(學(xué)生):是指數(shù)函數(shù),它是存在反函數(shù)的
(師):求反函數(shù)的步驟
(由一個學(xué)生口答求反函數(shù)的過程):
由得.又的值域為,所求反函數(shù)為.
(師):那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對數(shù)函數(shù).
(二)新課
1.(板書)定義:函數(shù)的反函數(shù)叫做對數(shù)函數(shù).
(師):由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個角度出發(fā).如從定義中你能了解對數(shù)函數(shù)的什么性質(zhì)嗎?最初步的認(rèn)識是什么?
(教師提示學(xué)生從反函數(shù)的三定與三反去認(rèn)識,學(xué)生自主探究,合作交流)
(學(xué)生)對數(shù)函數(shù)的定義域為,對數(shù)函數(shù)的值域為,且底數(shù)就是指數(shù)函數(shù)中的,故有著相同的限制條件.
(在此基礎(chǔ)上,我們將一起來研究對數(shù)函數(shù)的圖像與性質(zhì).)
2.研究對數(shù)函數(shù)的圖像與性質(zhì)
(提問)用什么方法來畫函數(shù)圖像?
(學(xué)生1)利用互為反函數(shù)的兩個函數(shù)圖像之間的關(guān)系,利用圖像變換法畫圖.
(學(xué)生2)用列表描點(diǎn)法也是可以的。
請學(xué)生從中上述方法中選出一種,大家最終確定用圖像變換法畫圖.
(師)由于指數(shù)函數(shù)的圖像按和分成兩種不同的類型,故對數(shù)函數(shù)的圖像也應(yīng)以1為分界線分成兩種情況和,并分別以和為例畫圖.
具體操作時,要求學(xué)生做到:
(1)指數(shù)函數(shù)和的圖像要盡量準(zhǔn)確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢等).
(2)畫出直線.
(3)的圖像在翻折時先將特殊點(diǎn)對稱點(diǎn)找到,變化趨勢由靠近軸對稱為逐漸靠近軸,而的圖像在翻折時可提示學(xué)生分兩段翻折,在左側(cè)的先翻,然后再翻在右側(cè)的部分.
學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出
和的圖像.(此時同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標(biāo)系內(nèi))如圖:
教師畫完圖后再利用電腦將和的圖像畫在同一坐標(biāo)系內(nèi),如圖:
然后提出讓學(xué)生根據(jù)圖像說出對數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個角度說明)
3.性質(zhì)
(1)定義域:
(2)值域:
由以上兩條可說明圖像位于軸的右側(cè).
(3)圖像恒過(1,0)
(4)奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點(diǎn)對稱,也不關(guān)于軸對稱.
(5)單調(diào)性:與有關(guān).當(dāng)時,在上是增函數(shù).即圖像是上升的
當(dāng)時,在上是減函數(shù),即圖像是下降的
之后可以追問學(xué)生有沒有值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r,可以再問能否看待何時函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:
當(dāng)時,有;當(dāng)時,有.
學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個結(jié)論的方法:當(dāng)?shù)讛?shù)與真數(shù)在1的同側(cè)時函數(shù)值為正,當(dāng)?shù)讛?shù)與真數(shù)在1的兩側(cè)時,函數(shù)值為負(fù),并把它當(dāng)作第(6)條性質(zhì)板書記下來.
最后教師在總結(jié)時,強(qiáng)調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對比記憶.(特別強(qiáng)調(diào)它們單調(diào)性的一致性)
對圖像和性質(zhì)有了一定的了解后,一起來看看它們的應(yīng)用.
(三).簡單應(yīng)用
1.研究相關(guān)函數(shù)的性質(zhì)
例1.求下列函數(shù)的定義域:
【高一數(shù)學(xué)教案】相關(guān)文章:
高一數(shù)學(xué)教案01-17
【推薦】高一數(shù)學(xué)教案02-25
高一數(shù)學(xué)教案【薦】01-24
高一數(shù)學(xué)教案【推薦】01-24
【薦】高一數(shù)學(xué)教案01-31
高一數(shù)學(xué)教案【熱】02-01
【熱門】高一數(shù)學(xué)教案02-27
高一數(shù)學(xué)教案【精】02-04
高一數(shù)學(xué)教案【熱門】01-24